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Abstract—An analytical method is developed for failure prediction of composite bolted joints with
multiple fasteners. The flexibility of all members in the joint is taken into account. A complex
variational approach is proposed for the stress analysis of the component plates which involves
multiple loaded holes and a strength of materials approach is used for the analysis of fasteners
which are modeled as short elastic beams. These analyses are carried out in an iterative scheme
which provides the stress distributions in the jointed plates. The failure strength and mode of the
joint are predicted using the results from the joint analysis along with the well-known point stress
criterion. The effectiveness of the analytical method developed is demonstrated by the comparisons
made between the results of the present analysis for several joints and the data available in the
literature. Crown Copyright © 1996 Published by Elsevier Science Ltd.

1. INTRODUCTION

The advanced fiber reinforced composite materials are increasingly used in the manu-
facturing of aerospace structures due to their high strength to weight ratios. In these
structures, mechanically fastened joints are indispensable for the assembly of structural
components. As a result, the development of efficient methods for the design and analysis
of mechanically fastened composite joints has been the focus of numerous research over
the years. Three major methods have been employed for composite joint strength analysis
which included the finite element method, e.g., Chang et al. (1984) and Crews et al. (1981),
the two dimensional anisotropic elastic analysis, e.g., De Jong (1977), and the boundary
collocation method, e.g., Oplinger and Gandhi (1974) and more recently Madenci and Ileri
(1993). Based on the boundary collocation method, Ramkumar er al. (1986, 1988) derived
some special finite elements and used these elements for strength analysis of composite
joints with multiple fasteners.

While the finite element method is a versatile numerical technique which can handle
various geometry and hole patterns, it is not ideal for parametric studies or optimum design.
The analytical method following Lekhnitskii (1968) uses an assumption of infinite plates
and requires a finite width correction for an actual laminate of finite geometry. In addition,
difficulties arise in laminates with arbitrarily located multiple loaded holes because of the
interactions. The boundary collocation method usually involves a conformal mapping and
a least-squares scheme. In the author’s experience, the results from the boundary collocation
method are sensitive to the selection of both the complex stress potentials and the boundary
points and convergence to incorrect values is possible if the selection is inappropriate.

In the majority of the methods used for strength analysis of composite joints, the
fasteners are assumed to be infinitely rigid. Force boundary conditions are usually used on
the hole edges with an assumed distribution for the radial pressure. It has been recognized
that the boundary conditions on the loaded hole and the fasteners’ flexibility have great
effects on the stress distribution around the hole. The use of a displacement boundary
condition to represent the effect of the fastener bearing against the hole, Oplinger (1978),
and the consideration of the fasteners’ flexibility, Ramkumar et al. (1986), were found to
give more accurate predictions.
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In this paper, an analytical method is developed for the failure prediction of composite
joints involving multiple fasteners. This method is being used in the development of a PC-
based design model for composite joints involving multiple fasteners. In this method, the
flexibility of all the joined members is taken into account by an iterative analysis scheme.
A complex variational approach is proposed for the stress analysis of the joined plates. The
approach is based on the complex equations of the problem and the variational principles.
In this approach, the equilibrium equations and compatibility relation are satisfied exactly
in the domain. All boundary conditions are satisfied through the variational formulations.
While a displacement-based formulation is employed for one plate, a mixed formulation is
used for the other plate. In the mixed formulation, displacement boundary conditions for
the fastener holes are dealt with by introducing Lagrangian multipliers. In this way the
actual load distributions on the holes transferred by the fasteners are determined, rather
than assumed, from the Lagrangian multipliers in the formulation. The fasteners are
modeled as elastic beams using a strength of materials approach. The joint failure strength
and mode are predicted using the results of the joint stress analysis along with the point
stress failure criterion, Whitney and Nuismer (1974). In this failure criterion, the concept
of characteristic lines is introduced for the three failure modes: net-tension, bearing, and
shear-out, respectively, which involves two independent characteristic dimensions. To verify
the effectiveness of the analytical method developed, results of several testing cases and
comparisons with the data available in the literature are presented.

2. STATEMENT OF PROBLEM

The problem under study is a composite-to-metal or composite-to-composite joint
which involves two or three platesjoined by multiple fasteners. The configurations of single-
lap (two plates) and double-lap joints (three plates) with two fasteners are illustrated in
Figs 1 and 2, respectively. In the double-lap joint, Plate 1 and Plate 3 can be made of a
metal or a composite. In the present problem, these two plates are assumed to be identical
and hence only one plate is analyzed. Plate 2 is assumed to be made of a composite and its
failure is to be predicted. The plates are of the same finite width, . They have, in general,
m circular or elliptical loaded holes of various sizes which are arbitrarily located, as shown
for Plate 2 in Fig. 3. The tensile load, P, applied at the edge of the middle plate, is in
equilibrium with the m fastener loads, P, (/ = 1,2,...,m). This load is transferred to Plate
1 in the single-lap joint. For the double-lap joint, this load is transferred to Plates 1 and 3.
Since these two plates are identical, the load is evenly distributed between them.

It is noted that the actual stress state at the fastener location is complex and three
dimensional in nature. This stress state is influenced by many factors concerning the
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Fig. 1. Configuration of a single-lap joint.



Failure prediction of composite joints 4397

T
2l =

A
L]
B A
P . 3
q4 @ |-
¥ D
i Pasteners
=
-
B
¥ %3 »
o i
Y ‘\.
na| ) G =
[ D

Fig. 2. Configuration of a double-lap joint.

properties of the fasteners and the bolted plates and their interactions. It would not be
appropriate to take all these factors into account in developing a simple analytical facility
for composite joints. The present paper considers symmetric configurations with respect to
x-axis only and assumes: (i) the load on one plate is transferred by flexible frictionless
fasteners over half of the hole edges along the primary loading direction, and (ii) the
secondary bending of the plates due to load eccentricity is negligible compared to the in-
plane deformations. Therefore in the present stress analysis for Plate 1 and Plate 2, general
in-plane loading conditions are considered using two dimensional anisotropic elasticity.
The fasteners are modeled as elastic beams with fixed end conditions for the double-lap
joint. For the single-lap joint, the fasteners are fixed at one end and are allowed to translate

>
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Fig. 3. General geometry configuration of Plate 2.
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Fig. 4. Fasteners modeled as elastic beams.

in the loading direction at the other end, as shown in Fig. 4. In this way, the rotation of
the fastener is simulated.

For the sake of simplicity, an identical set of notations is employed for both Plate 1
and Plate 2 as they are analyzed separately. The global coordinate system, x-y, is located
at the center of the plate. The corresponding stress resultants and displacement components
are denoted as N, N,. N, u, and v, respectively. The location of the i-th hole in the plate
is specified by the coordinates of its origin o; (x,,, y,;)- A local Cartesian system, x-y,, is used
for each hole which is coincident with the major and minor axes of the hole, @, and b,. The
local coordinate system for each hole is related to the global system as:

Xi = X—=Xois Vi=V—Vois i= 1a29 R (1)

In the local Cartesian system, the periphery of the i-th hole is expressed, in parametric
form, as:

X, =acosf, y,=bsinf, 0<pf<2n 2)

For the purpose of convenience, a polar system, »-8, is also used on the periphery of
each fastener hole with the r-axis being the outer normal direction and 6 = 0 being the
local x; axis. Noting the relation between the angle § and the parameter f, the following
transformations are established for the stress and displacement components

_ (N.bicos’ B+ N,a} sin® f+2N, a;b; cos Bsin )

Nr bl - 2 2
(af sin® B+ b7 cos® )
v (N.af sin® f+ N,b] cos® f—2N,, a;b,cos fsin )
1 =
! (@? sin® B+ b7 cos® B)
[(—= N+ N,)ab;cos fsin f+ N, (b] cos® f—ai sin® f)]
NrH = - 5 . - 5 (3)
(a? sin? B+ b7 cos® f)
and
ub, cos f+va,sin —ua;sin f+uvh, cos B )
Ty 5 5 >0’ Uy = ) ) 5
@ sin® f+57 cos® B J @ sin® B+5? cos® B

3. JOINT STRESS ANALYSIS

In order to determine the stress state in the joint, it is important to account for the
interaction of all joined members. In this section, joint stress analysis is conducted which
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takes into account the flexibility of the plates and fasteners. This is accomplished by an
iterative scheme involving the relative deformation between the fasteners and plates.

3.1. Iterative scheme

As seen in Figures 1 and 2, the external load, P, applied on Plate 2 is transferred by
the fasteners to Plate 1 (3). This load transfer results in the deflection of fasteners and the
elongation of the holes in Plate 1 (3). The combined deformation due to fastener deflection
and hole elongation affect, in turn, the deformation of Plate 2. This effect is dealt with by
considering the rigid body motions of the fasteners. The contact region of each hole in
Plate 2 is assumed to move a distance equal to the summation of the corresponding hole
elongation in Plate 1 (3) and the deflection of the fastener. According to this mechanism,
an iterative scheme which involves the following steps is established for joint stress analysis.

Step 1. Assign an initial value for each fastener load. Since the fastener load transferred
is proportional to their bending stiffness, EZ, the initial values assigned are:

El,

N ey ST LD IS S
’ EIII+E212+”.+EmIm ! T m ()

which are in equilibrium with the externally applied load, P.

Step 2. Calculate the hole elongation in Plate 1 under the applied load and the fastener
loads. The fastener loads are simulated by a cosine function. For a double-lap joint, Plate
1 is subjected to half of the applied load.

Step 3. Calculate the deflections of the fasteners under the shear loads transferred by
the fasteners.

Step 4. Calcuiate the summation of hole elongations and fastener deflections in Plate
1. The combined deformation is taken as the rigid body movement of the contact region of
the corresponding fastener holes in Plate 2. Calculate the reactions on holes of Plate 2
under the rigid body motions and the applied load, P.

Step 5. Take the reactions on the holes of Plate 2 as new fastener loads and repeat
steps 2—4 until a convergent solution is obtained.

It is noted that in this scheme a displacement boundary condition is used in the analysis
of Plate 2. As a result, the actual fastener loads are calculated rather than assumed. The
following subsections describe, in detail, the equations used in each step.

3.2. Basic complex equations for Plate 1 and Plate 2

In the complex theory of the two dimensional anisotropic elasticity, all basic relations
of the problem are described using the two stress potentials, ¢, and ¢,, see Lekhnitskii
(1968). They are expressed in terms of the two complex coordinate variables, z, and z,,
which are defined as:

2y =Xt Y, 2 = XAy (6)

where 1, and p, are the two distinct complex roots, with positive imaginary part, of the
characteristic equation of the laminate. The equation is written, in terms of the in-plane
compliance coefficients, a; (/,j = 1,2,6), as:

ay it =2a,608° + 2ay, + age) =224 az, =0 @)

In cases of a metallic plate where y, = yu, = y, we can assume p, = u—ig, and p, = u+ie,
where ¢ « 1. This assumption is considered acceptable for numerical computations.
The stress resultants take the following form:
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N, = 2Rc [#f do,(z)) ‘H‘% d(ﬂz(l’z)]

dZ‘ dZ;_
_ de,(z1) | des(z2)
N, —2Re[ dz, + az,
d
N, = —2Re/| p, (pl(zl)+#2d(P2(22) (8)
dZ‘ de

and the corresponding displacement components are derived as:
u=2Re[pip,(z1) +p20:(z,)], v=2Re[q,¢,(z1)+q:0:(z1)] 9)

where the two complex constants are defined as:

P = a]l/"lg+a12 — Qo> G = Qrafl+ Ao/ —aze, k=1,2 (10)
It 1s noted that the constants for the rigid body motions are set to zero in eqn (9) in

order to avoid any rigid body motion for the whole plate. The stress resultants and
displacement components are related by the constitutive equations as:

Cu v du Ov
N.=A;, - +4;; _+A16 W

ox Oy oy  0x
N, =4 O g (M
2oy ”ay 26 av dx
Ou ov ou Ov

Nn —'Aléa A 6} +A66( ax> (11)

where 4, (i,j = 1,2, 6) are the in-plane stiffness coefficients, that is [4,] ' is equal to [a;].

It is known that the stress and displacement components expressed in terms of the two
stress potentials as in eqns (8) and (9) satisfy the equilibrium equations and the compatibility
relation in the domain of the plate. The problem is now to find the appropriate stress
potentials so that the respective boundary conditions are satisfied. For this purpose, a
displacement-based formulation and a mixed variational formulation are established using
the above complex equations for Plate 1 and Plate 2, respectively. Then the admissible
functions in these formulations are the two complex stress potentials which are selected in
a summation of truncated Laurent series with conformal mapping as:

m N
@1 —CIO+ZC1n +Z< 'iolnsyli‘f‘ZD'lnCl_l")
=1

n=1 n=1

N m
QDZ = C20+ Z C2n2’21+ Z (DEO lng’)t Z DI_HQZI ) (12)
i=1

where the undetermined constants C,,, Di,, C,,, D5, are, in general, complex and the
mapping functions, with transformations of coordinates, are:

[Ce=x0) + 1 (V=¥ /[ =500 + 1y = yo) 1P —af —b7 i
a; “bi#k\/ —1

Cki =

k=12, i=12,...,m (13)
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where the sign of the square root term is chosen such that the i-th elliptical hole is mapped
to a unit circle. Noting that the stress potentials in eqn (12) involve logarithm terms, the
following conditions are imposed to ensure single-valued displacement components :

Im(p, Do +p2D5) =0, Im(q,Do+¢:D5%) =0, i=12,....m (14)

The above outlined complex equations are considered valid for both Plate 1 and Plate
2. In the following analysis, the same set of notation is used for the two plates. To avoid
confusion, the notation used in Section 3.3 refers to the variables of Plate 1 and the notation
used in Section 3.5 refers to those of Plate 2.

3.3. Displacement-based variational formulation for Plate 1

As seen in Figs 1 and 2, Plate 1 is under the applied load, P, and the fastener loads,
P,. This problem involves only force boundary conditions which are written, for the i-th
hole, as:

N = =), NWwB) =0, —T<p<3
. , 3
N(B) = Nig(B) =0, S<B<T (s)

where pl(f) represents the radial pressure resulting from the fastener loading which is
assumed to be a cosine distribution shown in the following equation :

. 2P,
p:(B) :T@COSﬁ (16)

For completeness, the boundary conditions on the exterior edges are written as:

w
On edges A-Band C—D: Ny(x, + 7) = Nn(x, + %V) =0

On edge B-C: vi-EN=L N (L =0 17)

n edge b~ x —2~} —W’ xy ——2,} - (
L L

On edge D-A: NX<§ a}’):ny(E’y):O

Since Plate 1 does not have any displacement boundary conditions, the minimum
potential energy theorem is applied. The total potential energy of Plate 1 is written as:

f= L (2 124, 2 o, (T
B2 P e 2 - Zoxay  TP\ay
du v du v\

Y P m /2 . -
*J e dy—3 J P(Byu,(B)/ai sin® B+ b} cos® fdf  (18)

vs i= n

+ Az

cu Ju
ox 0x

fa

where Q denotes the domain of Plate 1. Using the integration by parts, the first order
variation of the above energy functional with respect to u and v, respectively, is derived and
written as:
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~ ¢N, 0N, ON,. ON
oM, = | |~ =+ ) ou— |2+ =2 |ov '+b t 1
I L[ <5x * cy >5u < ox + dy >6L:|dXdy+ oundary terms  (19)

where the constitutive relations shown in eqn (11) are used to simplify the expressions of
the stress resultants. Note that all the stress and displacement components are actually
related to the two stress potentials, ¢, and ¢,.

The above variational formulation involves one area integration along with boundary
terms. Associated with the area integration are the two equilibrium equations which are
satisfied autornatically by using the stress potentials. Therefore the area integration in eqn
(19) vanishes. Then the variational formulation involves only boundary terms which are
written, in an expanded form, as:

dy

x=-—Lj2

N Xp Yo P
oI, = _J (nyéu-i— Nyav) |y= w2 dx +J l:(Nx - —VI—/)&H— ny(SU:I

v

X4

_ J (N, 0u+N,0v)|,_ _p dx+ J (N Ou+ N, ov)|,_r2 dy

Yp

—n/2

m n/2
- {J (N} —p)ou, + Njyouyl/ af sin® B+ b7 cos® B dfs
i=1

3ni2
+j (Niéuﬁ+Ni,,5uf))\/a,-2 sin? f+ b} cos? ﬁdﬁ} (20)

w2

It is seen that associated with the boundary integrations in eqn (20) are expressions
for the boundary conditions along the interior and exterior edges, as in eqns (15) and (17).
As a result, the minimization of the total potential energy is equivalent to the satisfaction
of the required boundary conditions. This equation is written as:

oM, =0 #3))

Using the stress potentials in eqn (12) as the trial functions for eqn (21), the complex
constants are determined and then the stress distribution and deformation in Plate 1 are
calculated. The hole elongations in this plate are to be used in the analysis of Plate 2, which
can be calculated, from eqn (9), as:

u; = 2Re [pl ?; (xui+ai+u1y()i)+p2 ¢2(x0i+ai+u2yoi)] I= 1, 27 o.M (22)

3.4. Deflection of fasteners

The fasteners are modeled as elastic beams and analyzed using the strength of materials
approach, Timoshenko and Gere (1972). Failure is assumed not to occur in the fasteners.
Since the fasteners are short, shear effects are taken into account. Although the fasteners
are actually elastically supported, the boundary conditions of the fasteners are simplified,
as shown in Fig. 4. The effect of elastic end supports is considered using a coeflicient, #,. As
mentioned earlier, the load eccentricity in a single-lap joint is ignored in this work.

A fastener in a single-lap joint has a fixed end and a free end where the shear load is
applied. The largest deflection in this case is:

d =

P(H,+H,)’ [ 124, E 1,

[=1,2,..., 23
12E GfA,»(HI+H2>2} Tl &9

where o, is the shear coefficient which is 1.33 for a circular cross section, H denotes the
thickness of the plate, E£,1; and G,A4; are the bending and shear rigidity, respectively, and #,
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is the coefficient accounting for effects of elastic end supports. For circular fasteners, the
value of #, 1s taken as:

d~ 2
,?,z(;{L), =12 ..m (24)
1

where d; is the diameter of the circular cross section and H, is the thickness of Plate 1.
Equation (24) indicates that the deflection of a fastener decreases as Plate 1 becomes
thicker.

In a double-lap joint, the fastener has both ends fixed and is subjected to a shear load
at the mid-span, see Fig. 4. The largest deflection is:

P,(2H, +H,)} 480, Eif;
QH, + J[ )] i=1,2....m (25)

TV G.A(2H, + H,

The fastener deflections calculated in eqns (23) and (25) produce a relative movement
of the bolted plates which is taken into account in the analysis of Plate 2.

3.5. Mixed variational formulation for Plate 2

As seen in Figs 1 and 2, Plate 2 is under the applied load, P, and the fastener loads,
P, In addition, each fastener hole in this plate has a rigid body motion which is equal to
the summation of the hole elongation in Plate 1 and the fastener deflection :

G=u+d, i=12,.. . .m (26)

where u; is from eqn (22) and §,is from eqn (23) or (25). Since only the relative displacement
is of interest, the rigid body motion of each hole is defined as the difference between the
movement of the current hole and that of a reference hole. For convenience of analysis,
this relative displacement in global x direction is transferred into that in the outer normal
direction on the hole edge, from eqn (4), as:

#b;cos f

a(p) = i=1,2,....m (27)

\/ at sin® B+ b} cos? B

Plate 2 involves both displacement and force boundary conditions which are written,
for the i-th representative hole, as:

Ni(B) = Nuw(B) =0, -
u,(B) = @(B), N.(B) =0, (28)

and for exterior edges, as:

w w
Onedges A-Band C-D: N, (r + 7) =N, (x, + 7) =0
L L
On edge B-C: Nx(_zsy>:Nx'_v(_2’y>:0

L P L
On edge D-A: N, <§L) =W N, (E’y> =0 (29)
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In the present case, a mixed variational formulation is applied. The functional in
the formulation is derived from that of the minimum potential energy theorem with the
displacement boundary conditions released by introducing Lagrangian multipliers, A’ The
mixed functional is written as:

. 1 ou\? du ov r\?
I, = A0 a F241, 5=+ A -
2 o ox 0x Oy dy
u cu\fou ov ou v\
QA6+ +A— | —+—]|+4 dxdy
* < ox T 26@){)(6y+0x>+ 66(6y+(3x>} ¥ oy

V4 P m 3ni2 . i -
- j Ll dyt Y J F(B) () — )/ sin® f+bicos’ fdf (30)
Yo i=1

w

2

where Q denotes the domain of Plate 2, 4'(#) is the Lagrangian Multiplier for the i-th hole.
Using similar procedures in Section 3.3, the first order variation of the above energy
functional with respect to u, v, and A', respectively, is derived and written as:

5ﬁ2 = - f ' (N.\'yéuJ’- N\‘(SU) |y: 2 dx+ J ‘ (N\5u+ Nr\év) |,\‘= —-L/2 d)’

Vi R}

¥ V4 P
— f (N ou+Nov)|,_ w,dx+ [ [(N_\. — W)éu + N,\,J,(Sv:l

n 2
-y U (Niou, + Nigduy)\/a? sin? B+ b? cos® fdp
i=1 -2

dy

x=L;2

3n/2
+ j [V — 2, — (u — @)54 + N'ydu]\/a sin® B+ b7 cos® Bdﬁ} G1)

w2

It is seen that associated with the boundary integrations in eqn (31) are expressions
for the boundary conditions along the interior and exterior edges, as in eqns (28) and (29).
The term associated with du, reveals that the Lagrangian multiplier for each hole represents
the corresponding radial stress on the loaded half of the hole edge. As a result, the vanishing
condition of eqn (31) is equivalent to the satisfaction of all the boundary conditions of the
present problem. This vanishing condition is written as:

oI, =0 (32)

The solution of the problem is now to select appropriate stress potentials, ¢, and @,
and Lagrangian Multipliers, A, as the trial functions. While eqn (12) is used for the stress
potentials, a general series form of trigonometric functions with undetermined real constants
is selected for the Lagrangian Multipliers. This series is written as:

AB) =4+ i [A%;sin (jB) + A%, cos (B, i=1,2,....m (33)

where the number of terms in this series is taken as / = N—1 in order for the series to be
compatible with the stress functions expressed in eqn (12). Since the Lagrangian multipliers
represent the radial pressure on the loaded half of the holes, the conditions of equilibrium
in the global x and y directions are imposed in order to ensure the convergence of the
computation. These conditions are written as:
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[N

J‘Zn,’z )f(ﬂ)b, COSﬁdﬁ — P, i szz zi(ﬁ)ai Sll’lﬁdﬁ =0 (34)

i=1 Jni2 2

There are 2(m+ 1)(N+ 1) complex constants in eqn (12) and m(J+ 1) real constants
in eqn (33) which must be determined. This determination is accomplished by using eqn
(32) along with conditions in eqns (14) and (34). Once these constants are determined, the
stress and displacement components are calculated.

The fastener load on the i-th hole is determined by the integration :

3n/2
P, =J A (Bb;cosBdp, i=1,2,....m (35)

The fastener loads calculated from eqn (35) are substituted back in the analyses for Plate
1 and the fasteners. This iteration proceeds until a convergent solution is obtained. The
stress distributions in the vicinity of loaded holes in both Plate 1 and Plate 2 are then
calculated and used for joint failure prediction.

4. JOINT FAILURE PREDICTION

With results of joint stress analysis at hand, the joint failure strength and mode can
now be predicted. For the sake of simplicity, only the failure prediction of Plate 2 is outlined
in this paper. Failure modes in composite joints can be very complex and quite different from
those in metal joints because composites exhibit anisotropic properties, lack of ductility, and
inherent interlaminar weakness. Three typical failure modes are considered in this work
which are net-tension, bearing and shear-out. The point stress failure criterion developed
by Whitney and Nuismer (1974) is employed which states that failure occurs when the
maximum tensile stress, the maximum compressive stress, or the maximum shear stress at
discrete locations on any of the loaded holes reaches the corresponding failure strength of
the unnotched laminate. Two independent characteristic dimensions, ., and d?, are required
to specify the locations where the stress components are assessed, as shown in Fig. 5. The
characteristic dimensions are usually determined from testing data. The point stress failure
criterion can be expressed, for the i-th hole, as:

Net-tension line: z -z and z - Zg
Shear-out line: 3 -z and z -Z

Bearing line: Z3 -2,

Fig. 5. Characteristic dimensions in failure criterion.
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net-tension: when N.(x,»)/H, =X at x=x,, y=y,+(b+d,)
shear-out:  when N, (x,))/H, =S at x=x,—(a+d’), y=y.+(b+d)
Vei (36)

bearing : when N.(x,y)/H, =X at x=x,—(a+d})), y=

where X, X’, and S are the failure strength of the corresponding unnotched laminate under
uniaxial tension, uniaxial compression, and pure shear, respectively. These unnotched
failure strengths can be determined empirically or calculated using the concepts of pro-
gressive ply failure and material degradation.

Since the stress components in the bolted plate are calculated from eqn (8) under the
applied load, P, the joint strength for each failure mode can be determined using the
following expressions:

- P’// W R
net-tension: o} = ! e
N’( [xoia _,V,,,- i (bx + d:))]
P/W _
shear-out : gt = / s
N\‘J’[x()f - (a,- + di’)’ Vit (b1 + d:))]
PIW _
bearing: o = , I -

NV [-xoi - (ai + dﬁ)’ ym']

The prevailing joint strength and failure mode are identified from the minimum value
of the three joint strengths calculated.

5. RESULTS AND DISCUSSION

Strength analysis of a set of composite-to-metal joints with multiple fasteners has been
conducted using the analytical method developed and part of these results are presented in
this section to demonstrate the effectiveness of the method. The joints analysed have been
investigated theoretically and experimentally by Ramkumar ez al. (1986, 1988). In all cases
under study, Plate 1(3) is made of aluminum and Plate 2 is made of the material AS1/3501-
6 with various lay-ups. All fasteners are steel with protruding heads. The material properties
for each ply of AS1/3501-6 are: E, = 18.5x 10 psi, E; = 1.9x 10° psi, G, = 0.85x 10°
psi, v, = 0.3, and the strength allowances are: X = 230.0 x 10° psi, X" = 321.0 x 10° psi,
Y =9.5x10%psi, Y" = 38.9 x 10’ psi, S = 17.3 x 10° psi. The material properties for alumi-
num and steel are taken as E, = 10 x 10° psi, v, = 0.3 and E,, = 30 x 10° psi, v, = 0.3,
respectively.

In the first case, the stresses in a four-fastener joint, as shown in Fig. 6, are calculated
using the present method and by a finite element method involving gap elements. The
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Fig. 6. Configuration of four-fastener joint.
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Fig. 7. Comparison of stress results between analytical and FE methods.

layup of the composite laminate is [(45/0/ —45/0),/0/90],. The distributions of the stress
component in the loading direction around two fastener holes are shown in Fig. 7. The
reasonably good agreement between the present results and the finite element data dem-
onstrates the accuracy of the complex variational approach proposed for the joint stress
analysis. Note that the discrepancies in the comparisons are due to the relatively coarse
mesh used in the finite element model. Another reason for the discrepancies might be related
to the ignorance of the pin displacements in the y-direction.

The failure strength and mode of the same joint are predicted using the values for the
characteristic dimensions as: d’, = 0.0321in, @4 = 0.032in. The fastener loads, joint failure
load, failure location, and failure mode predicted from the present method are compared
with the testing data and the SAMCI predictions from Ramkumar er al. (1986, 1988). Good
agreement is shown in Table 1 for this comparison. It is noted that the present method
predicts the two lower failure modes as shear-out and net-tension. Since the failure strengths
for these two modes are very close, the joint is predicted to fail in a combination of shear-
out and net-tension as observed in the test.

As a final example, a double-lap joint with five fasteners in series is analyzed with the
characteristic dimensions as: d’, = 0.020in, d% = 0.020in. The joint configuration is shown
in Fig. 8 and the layup of the composite laminate is [(45/0/ —45/0),/0/90],,. Good agreement
in the comparison of results is obtained, as shown in Table 2. The joint is predicted to fail
in a single mode, net-tension, as the failure strengths of the other two modes are much
higher than that for the net-tension mode. This prediction is identical to the test result.
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Table 1. Fastener loads, failure load, location and mode of the four-fastener

joint
Present SMACJ Testing
prediction Ramkumar (1988) Ramkumar (1988)
PP 0.23 0.24 0.25
P.P 0.23 0.24 0.25
P.pP 0.27 0.26 0.29
PP 0.27 0.26 0.21
P.(x 107 1b) 17.0 (17.7)* 18.1 (18.9)* 17.1

Location 3,4 4(3) 3.4

shear-out shear-out shear-out

Mode (net tension) net-tension

delamination

* Possible failure mode at a slightly higher load level.
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Fig. 8. Configuration of five-fastener joint.

Table 2. Fastener loads, failure load, location and mode of five-fastener joint

Present SAMCJ Testing
prediction Ramkumar (1988) Ramkumar (1988)
PP 0.164 0.172 0.164
PP 0.120 0.156 0.124
mP 0.133 0.167 0.161
PP 0.205 0.211 0.207
PP 0.379 0.293 0.345
P, (% 10°1b) 16.9 13.4 17.7
Location 5 5 S
Mode net-tension net-tension net-tension

6. CONCLUSIONS

An analytical method has been developed for the failure prediction of composite joints
involving multiple fasteners. An iterative scheme based on a complex variational approach
was established. The proposed complex variational approach dealt with finite jointed plates
involving multiple loaded holes with no requirement for finite width correction. The loaded
holes were, in general, of elliptical shape and arbitrarily located in the plate and the fastener
loads were determined, rather than assumed, from the Lagrangian multipliers introduced
into the formulation. While the friction on the fastener-hole surfaces was ignored, the
flexibility of the fasteners was taken into account by modeling the fasteners as elastic beams.
The approach provided closed-form expressions for the stress resultants and displacement
components and its accuracy was assessed by comparing the present calculation with the
finite element results. In the prediction of joint failure strength and mode, the well-known
point stress criterion was employed. The successful comparisons between the present pre-
dictions and the data available in the literature verified the effectiveness of the analytical
method developed. More results of joint design using this method have been obtained and
presented in Xiong and Poon (1994).
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